Contact Us

Posts by Month


NASA Space Place

The Hottest Planet in the Solar System

The Hottest Planet in the Solar System

We’ve all heard of the greenhouse affect—the process where a planet’s atmosphere allows heat in but blocks some of that heat from escaping back into space. It’s a major reason why Earth’s climate is so stable while many other inner planets suffer wild temperature swings. It is also the reason why the second closest planet to the sun is, by far, the warmest planet in the solar system. Learn more about Venus’s extreme heat and its cause in this month’s column!
Thumbnail of image described caption.

Image credit: NASA’s Pioneer Venus Orbiter image of Venus’s upper-atmosphere clouds as seen in the ultraviolet, 1979.

Read the article using Adobe Reader.

Tackling the Really BIG Questions

By Diane K. Fisher

How does NASA get its ideas for new astronomy and astrophysics missions?  It starts with a Decadal Survey by the National Research Council, sponsored by NASA, the National Science Foundation, and the Department of Energy. The last one, New Worlds, New Horizons in Astronomy and Astrophysics was completed  in 2010.  It defines the highest-priority research activities in the next decade for astronomy and astrophysics that will “set the nation firmly on the path to answering profound questions about the cosmos.” It defines space- and ground-based research activities in the large, midsize, and small budget categories.

The recommended activities are meant to advance three science objectives:

  1. Deepening understanding of how the first stars, galaxies, and black holes formed,
  2. Locating the closest habitable Earth-like planets beyond the solar system for detailed study, and
  3. Using astronomical measurements to unravel the mysteries of gravity and probe fundamental physics.

For the 2012-2021 period, the highest-priority large mission recommended is the Wide-field Infrared Survey Telescope (WFIRST). It would orbit the second Lagrange point and perform wide-field imaging and slitless spectroscopic surveys of the near-infrared sky for the community. It would settle essential questions in both exoplanet and dark energy research and would advance topics ranging from galaxy evolution to the study of objects within the galaxy and within the solar system.

Naturally, NASA’s strategic response to the recommendations in the decadal survey must take budget constraints and uncertainties into account.

The goal is to begin building this mission in 2017, after the launch of the James Webb Space Telescope. But this timeframe is not assured. Alternatively, a different, less ambitious mission that also address the Decadal Survey science objectives for WFIRST would remain a high priority.

The Astrophysics Division is also doing studies of moderate-sized missions, including: gravitational wave mission concepts that would advance some or all of the science objectives of the Laser Interferometer Space Antenna (LISA), but at lower cost; X-ray mission concepts to advance the science objectives of the International X-ray Observatory (IXO), but at lower cost; and mission concept studies of probe-class missions to advance the science of a planet characterization and imaging mission.


For a summary of NASA’s plans for seeking answers to the big astrophysics questions and to read the complete Astrophysics Implementation Plan (dated December 2012), see  For kids, find lots of astrophysics fun facts and games on The Space Place,


This article was provided by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.



Clusters of galaxies collide in this composite image of “Pandora’s Cluster.” Data (in red) from NASA’s Chandra X-ray Observatory show gas with temperatures of millions of degrees. Blue maps the total mass concentration (mostly dark matter) based on data from the Hubble Space Telescope (HST), the European Southern Observatory’s Very Large Telescope (VLT), and the Japanese Subaru telescope. Optical data from HST and VLT also show the constituent galaxies of the clusters. Such images begin to reveal the relationship between concentration of dark matter and the overall structure of the universe.

The Art of Space Imagery

By Diane K. Fisher


When you see spectacular space images taken in infrared light by the Spitzer Space Telescope and other non-visible-light telescopes, you may wonder where those beautiful colors came from? After all, if the telescopes were recording infrared or ultraviolet light, we wouldn’t see anything at all. So are the images “colorized” or “false colored”?


No, not really. The colors are translated. Just as a foreign language can be translated into our native language, an image made with light that falls outside the range of our seeing can be “translated” into colors we can see. Scientists process these images so they can not only see them, but they can also tease out all sorts of information the light can reveal. For example, wisely done color translation can reveal relative temperatures of stars, dust, and gas in the images, and show fine structural details of galaxies and nebulae.



Spitzer’s Infrared Array Camera (IRAC), for example, is a four-channel camera, meaning that it has four different detector arrays, each measuring light at one particular wavelength. Each image from each detector array resembles a grayscale image, because the entire detector array is responding to only one wavelength of light. However, the relative brightness will vary across the array.


So, starting with one detector array, the first step is to determine what is the brightest thing and the darkest thing in the image. Software is used to pick out this dynamic range and to re-compute the value of each pixel. This process produces a grey-scale image. At the end of this process, for Spitzer, we will have four grayscale images, one for each for the four IRAC detectors.


Matter of different temperatures emit different wavelengths of light. A cool object emits longer wavelengths (lower energies) of light than a warmer object. So, for each scene, we will see four grayscale images, each of them different.


Normally, the three primary colors are assigned to these gray-scale images based on the order they appear in the spectrum, with blue assigned to the shortest wavelength, and red to the longest. In the case of Spitzer, with four wavelengths to represent, a secondary color is chosen, such as yellow. So images that combine all four of the IRAC’s infrared detectors are remapped into red, yellow, green, and blue wavelengths in the visible part of the spectrum.



Download a new Spitzer poster of the center of the Milky Way. On the back is a more complete and colorfully-illustrated explanation of the “art of space imagery.” Go to


This article was provided by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

This image of M101 combines images from four different telescopes, each detecting a different part of the spectrum. Red indicates infrared information from Spitzer’s 24-micron detector, and shows the cool dust in the galaxy. Yellow shows the visible starlight from the Hubble telescope. Cyan is ultraviolet light from the Galaxy Evolution Explorer space telescope, which shows the hottest and youngest stars. And magenta is X-ray energy detected by the Chandra X-ray Observatory, indicating incredibly hot activity, like accretion around black holes.